Ad-Hoc Queries over Document Collections - A Case Study
نویسندگان
چکیده
We discuss the novel problem of supporting analytical business intelligence queries over web-based textual content, e.g., BI-style reports based on 100.000’s of documents from an ad-hoc web search result. Neither conventional search engines nor conventional Business Intelligence and ETL tools address this problem, which lies at the intersection of their capabilities. “Google Squared” or our system GOOLAP.info, are examples of these kinds of systems. They execute information extraction methods over one or several document collections at query time and integrate extracted records into a common view or tabular structure. Frequent extraction and object resolution failures cause incomplete records which could not be joined into a record answering the query. Our focus is the identification of join-reordering heuristics maximizing the size of complete records answering a structured query. With respect to given costs for document extraction we propose two novel joinoperations: The multi-way CJ-operator joins records from multiple relationships extracted from a single document. The two-way join-operator DJ ensures data density by removing incomplete records from results. In a preliminary case study we observe that our join-reordering heuristics positively impact result size, record density and lower execution costs. )
منابع مشابه
ارائه روشی پویا جهت پاسخ به پرسوجوهای پیوسته تجمّعی اقتضایی
Data Streams are infinite, fast, time-stamp data elements which are received explosively. Generally, these elements need to be processed in an online, real-time way. So, algorithms to process data streams and answer queries on these streams are mostly one-pass. The execution of such algorithms has some challenges such as memory limitation, scheduling, and accuracy of answers. They will be more ...
متن کاملQuer ies over Document Collections - a Case Study ( incomplete workshop discussion draft )
We discuss the novel problem of supporting analytical business intelligence queries over web-based textual content, e.g., BI-style reports based on 100.000’s of documents from an ad-hoc web search result. Neither conventional search engines nor conventional Business Intelligence and ETL tools address this problem, which lies at the intersection of their capabilities. “Google Squared” or our sys...
متن کاملQuery Expansion with ConceptNet and WordNet: An Intrinsic Comparison
This paper compares the utilization of ConceptNet and WordNet in query expansion. Spreading activation selects candidate terms for query expansion from these two resources. Three measures including discrimination ability, concept diversity, and retrieval performance are used for comparisons. The topics and document collections in the ad hoc track of TREC-6, TREC-7 and TREC-8 are adopted in the ...
متن کاملUpsortable: Programming TopK Queries Over Data Streams
Top-k queries over data streams is a well studied problem. There exists numerous systems allowing to process continuous queries over sliding windows. At the opposite, nonappend only streams call for ad-hoc solutions, e.g. tailormade solutions implemented in a mainstream programming language. In the meantime, the Stream API and lambda expressions have been added in Java 8, thus gaining powerful ...
متن کاملMachine Learning for Information Retrieval
In this thesis, we explore the use of machine learning techniques for information retrieval. More specifically, we focus on ad-hoc retrieval, which is concerned with searching large corpora to identify the documents relevant to user queries. This identification is performed through a ranking task. Given a user query, an ad-hoc retrieval system ranks the corpus documents, so that the documents r...
متن کامل